Welcome Guest
Register | Login
Search Results

Showing 59 dice roll(s) where player character name is 'Evenwood'

Click on die roll ID to view all details and links to the roll.

Roll IDCharacterCampaignRoll resultDate
199154Evenwood5th Ed Waterdeep[1d4] = 14/21/2020 5:12:50 AM
199153Evenwood5th Ed Waterdeep[1d20+7] = 14+7 = 214/21/2020 5:12:20 AM
199152Evenwood5th Ed Waterdeep[1d20+7] = 5+7 = 124/21/2020 5:11:56 AM
198303Evenwood5th Ed Waterdeep[1d4] = 24/10/2020 7:36:19 PM
198302Evenwood5th Ed Waterdeep[1d4] = 34/10/2020 7:35:57 PM
198301Evenwood5th Ed Waterdeep[1d4] = 14/10/2020 7:35:40 PM
198300Evenwood5th Ed Waterdeep[1d4] = 44/10/2020 7:35:22 PM
198299Evenwood5th Ed Waterdeep[1d20+2] = 17+2 = 194/10/2020 7:34:54 PM
198298Evenwood5th Ed Waterdeep[1d20+2] = 10+2 = 124/10/2020 7:34:38 PM
198297Evenwood5th Ed Waterdeep[1d20+2] = 19+2 = 214/10/2020 7:34:10 PM
198296Evenwood5th Ed Waterdeep[1d20+2] = 16+2 = 184/10/2020 7:33:50 PM
197715Evenwood5th Ed Waterdeep[1d4] = 4[1d4+2] = 1+2 = 34/4/2020 5:46:14 AM
197714Evenwood5th Ed Waterdeep[1d4] = 2[1d4] = 3+24/4/2020 5:45:38 AM
197713Evenwood5th Ed Waterdeep[1d4] = 2[1d4] = 3+24/4/2020 5:44:40 AM
197690Evenwood5th Ed Waterdeep[1d20+2] = 16+2 = 184/3/2020 7:48:30 PM
197186Evenwood5th Ed Waterdeep[2d8] = 73/26/2020 5:21:31 PM
197185Evenwood5th Ed Waterdeep[1d20+7] = 4+7 = 113/26/2020 5:21:01 PM
197184Evenwood5th Ed Waterdeep[1d20+7] = 14+7 = 213/26/2020 5:20:44 PM
197022Evenwood5th Ed Waterdeep[2d10] = 113/23/2020 3:23:53 PM
197021Evenwood5th Ed Waterdeep[1d20+7] = 2+7 = 93/23/2020 3:23:32 PM
197020Evenwood5th Ed Waterdeep[1d20+7] = 16+7 = 233/23/2020 3:23:08 PM
197019Evenwood5th Ed Waterdeep[1d20+2] = 1+2 = 33/23/2020 3:17:49 PM
196951Evenwood5th Ed Waterdeep[1d8] = 73/22/2020 6:53:17 AM
196950Evenwood5th Ed Waterdeep[1d20+3] = 11+3 = 143/22/2020 6:52:22 AM
196949Evenwood5th Ed Waterdeep[2d6] = 83/22/2020 6:50:34 AM
196910Evenwood5th Ed Waterdeep[2d10] = 93/20/2020 6:21:51 PM
196909Evenwood5th Ed Waterdeep[1d20+7] = 6+7 = 133/20/2020 6:21:22 PM
196908Evenwood5th Ed Waterdeep[2d6] = 93/20/2020 6:20:59 PM
196573Evenwood5th Ed Waterdeep[1d6] = 13/15/2020 7:12:28 AM
196572Evenwood5th Ed Waterdeep[1d6] = 53/15/2020 7:11:40 AM
196571Evenwood5th Ed Waterdeep[2d6] = 73/15/2020 7:11:22 AM
196323Evenwood5th Ed Waterdeep[1d20+2] = 12+2 = 143/10/2020 7:11:50 PM
196322Evenwood5th Ed Waterdeep[1d20+2] = 13+2 = 153/10/2020 7:11:34 PM
195970Evenwood5th Ed Waterdeep[1d20+4] = 11+4 = 153/3/2020 6:28:37 PM
195969Evenwood5th Ed Waterdeep[1d20+4] = 19+4 = 233/3/2020 6:28:36 PM
195680Evenwood5th Ed Waterdeep[1d8] = 62/27/2020 6:37:29 PM
195679Evenwood5th Ed Waterdeep[1d20+3] = 13+3 = 162/27/2020 6:36:52 PM
195514Evenwood5th Ed Waterdeep[1d20+7] = 19+7 = 262/25/2020 6:56:24 PM
195442Evenwood5th Ed Waterdeep[2d10] = 112/24/2020 7:16:39 PM
195441Evenwood5th Ed Waterdeep[1d20+7] = 17+7 = 242/24/2020 7:16:10 PM
195273Evenwood5th Ed Waterdeep[1d6] = 1[1d6] = 2[1d6] = 2[1d6] = 32/21/2020 8:31:04 PM
195067Evenwood5th Ed Waterdeep[1d20+2] = 9+2 = 112/19/2020 7:11:34 PM
195065Evenwood5th Ed Waterdeep[1d20+2] = 20+2 = 22[1d20+2] = 17+2 = 192/19/2020 7:11:08 PM
195066Evenwood5th Ed Waterdeep[1d20+2] = 18+2 = 20[1d20+2] = 15+2 = 172/19/2020 7:11:08 PM
190696Evenwood5th Ed Waterdeep[1d4] = 212/18/2019 7:35:24 PM
190695Evenwood5th Ed Waterdeep[1d20+4] = 10+4 = 1412/18/2019 7:29:11 PM
190694Evenwood5th Ed Waterdeep[1d20+4] = 3+4 = 712/18/2019 7:28:51 PM
190484Evenwood5th Ed Waterdeep[1d20+7] = 6+7 = 1312/17/2019 9:19:17 AM
190483Evenwood5th Ed Waterdeep[1d20+7] = 2+7 = 912/17/2019 9:18:35 AM
190305Evenwood5th Ed Waterdeep[1d20+2] = 2+2 = 412/14/2019 1:16:58 PM
190304Evenwood5th Ed Waterdeep[1d20+2] = 13+2 = 1512/14/2019 1:16:09 PM
190292Evenwood5th Ed Waterdeep[1d20+2] = 2+2 = 412/14/2019 6:54:01 AM
190291Evenwood5th Ed Waterdeep[1d20+2] = 13+2 = 1512/14/2019 6:52:50 AM
190268Evenwood5th Ed Waterdeep[1d20+4] = 13+4 = 1712/13/2019 8:17:34 PM
190267Evenwood5th Ed Waterdeep[1d20+2] = 2+2 = 412/13/2019 8:16:27 PM
190003Evenwood5th Ed Waterdeep[1d4] = 312/8/2019 8:06:05 PM
190002Evenwood5th Ed Waterdeep[1d20] = 712/8/2019 8:05:35 PM
189815Evenwood5th Ed Waterdeep[1d4+3] = 3+3 = 612/5/2019 7:56:10 PM
189813Evenwood5th Ed Waterdeep[1d20+5] = 10+5 = 1512/5/2019 7:55:14 PM
The Unseen Servant
© 2020 Smash-Co Communications
By using this site you agree to our Terms of use and our Privacy Policy.
Home | Donate | Forums
Users Guide | Macro Syntax | Dice Rolling Sandbox